Pseudomonas putida 06909 genes expressed during colonization on mycelial surfaces and phenotypic characterization of mutants

S.-J. Ahn¹, C.-H. Yang² and D.A. Cooksey¹

¹ Department of Plant Pathology, University of California, Riverside, CA, USA
² Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA

Introduction

Currently, there is a great interest in the study of colonization mechanisms in bacteria useful in biological control of plant diseases, to develop disease control to a greater extent (Simons et al. 1997; Bloemberg and Lugtenberg 2001). Soil bacteria belonging to the species Pseudomonas fluorescens and Pseudomonas putida have been well studied, because they have the potential for agricultural use (O’Sullivan and O’Gara 1992; Lugtenberg and Dekkers 1999; Haas et al. 2000; Walsh et al. 2001). One of the most attractive characteristics is that they can colonize root surfaces (rhizosphere), where diverse environmental factors and microbial interactions exist (Dekkers et al. 1998; Espinosa-Urgel et al. 2002). Through extensive studies by various genetic and physiological approaches, the molecular mechanisms involved in the attachment and colonization of plant roots by these fluorescent pseudomonads in the rhizosphere are being identified (Haas et al. 2000; Walsh et al. 2001). In the rhizosphere, these

Abstract

Aims: The main focus of this study was to gain an overall view of Pseudomonas putida 06909 genes involved in the Pseudomonas–Phytophthora interaction as a biological control mechanism, and to understand the roles of these genes.

Methods and Results: Sixteen Ps. putida genes with increased expression on Phytophthora mycelial surfaces were identified using in vivo expression technology (IVET) screening. Sequence analysis of these Phytophthora mycelium-induced (pmi) genes revealed that many of them display similarity to genes known or predicted to be involved in carbohydrate catabolism, energy metabolism, amino acid/nucleotide metabolism, and membrane transport processes. Disruption of three pmi genes encoding succinate semialdehyde dehydrogenase, a dicarboxylic acid transporter, and glyceraldehyde-3-phosphate dehydrogenase showed significant phenotypic differences involved in the colonization processes, including motility, biofilm formation on abiotic surfaces, colony morphology, and competitive colonization of fungal mycelia. All three of these pmi genes were induced by glycogen and other substances, such as organic acids and amino acids utilized by Ps. putida.

Conclusions: The IVET screening and mutant characterization can be used to identify bacterial genes that are induced on the mycelial surface and provide insight into the possible mechanisms of mycelial colonization by this bacterium.

Significance and Impact of the Study: The IVET screening through a bacterial genome library might be a huge task. However, because the genes involved in direct interaction with Phytophthora and in bacterial adaptation can be identified, the IVET system will be a valuable tool in studying biocontrol bacteria at the molecular and ecological levels.
biocounter bacteria compete for nutrients and niches with endogenous microorganisms, such as other bacteria and fungi. Therefore, to gain a better understanding of how biocounter bacteria function in the rhizosphere, the interactions with other microbes, such as root pathogenic fungi, should also be taken into account.

In this study, we focused on a bacterial–Phytophthora interaction in an ongoing programme to identify the factors influencing biological control by Ps. putida 06909, a strain that has shown effectiveness in the control of citrus root rot caused by Phytophthora (Turney 1995; Steddom et al. 2002). In the earlier study using an in vivo expression technology (IVET) strategy based on pyrB as a selection marker, which is driven by fusions with active promoters from a random genomic library, five genes were identified in Ps. putida 06909, which were induced in the presence of Phytophthora parasitica. Sequence analysis indicated that three of these were related to genes with previously described functions, including a diacylglycerol kinase, an ABC transporter, and an outer membrane porin (Lee and Cooksey 2000). Recently, using IVET, the identification of the Ps. fluorescens genes, encoding traits such as two-component sensing systems, sugar transporters and metabolism, amino acid transporters, stress response, a type III secretion system, and a range of novel genes that were expressed at a higher level in the presence of bacterial strains were grown at 28°C on V8C agar (Miller 1955), and synthetic growth (SG) medium (Andrew 1980) was used for preparation of P. parasitica-spent medium. Agar discs (7 mm in diameter) were cut from the edge of the mycelium and used as inocula for all the assays on agar plates. In the plasmid pGEM-Km, a kanamycin gene flanked by AscI restriction sites was produced by polymerase chain reaction (PCR) with vector pGEM-T Easy (Promega, Madison, WI, USA) as a template.

DNA techniques

Plasmid preparation, restriction endonuclease cleavage, ligation, electrophoresis, and other recombinant DNA techniques were carried out using standard methods (Ausubel et al. 1987). Chromosomal DNA of Ps. putida wild-type strain 06909 and its mutants was prepared with a Genomic DNA Preparation Kit (Promega). Southern blot analysis was performed using the DIG DNA labelling and detection kit (Boehringer Mannheim, Mannheim, Germany), as described in the manufacturer’s instructions. DNA sequencing was carried out at the Genomic Institute of the University of California, Riverside, CA, USA. The primers used in this study were synthesized commercially (Genosys Biotechnologies, Inc, The Woodlands, TX, USA). Sequences were analysed and compared with the Genbank databases by using BLAST (Basic Local Alignment Search Tool) programs. Sequence data for the Ps. putida KT2440 and Pseudomonas aeruginosa PA01 genomes were obtained from The Institute for Genomic Research (http://www.tigr.org) and the Pseudomonas Genome Project (http://www.pseudomonas.com), respectively.

IVET screening

A new genomic library of Ps. putida 06909 for Phytophthora-inducible IVET clones was constructed in pRIV16 as described in an earlier study (Lee and Cooksey 2000). Briefly, 2–8 kb Sau3A size-fractionated DNA fragments were ligated into the BamHI site of pRIV16 to generate the library. About 20 000 clones with inserts were

Materials and methods

Bacterial strains, plasmids, media and culture conditions

Escherichia coli cultures were grown at 37°C on Luria-Bertani (LB) medium (Sambrook et al. 1989) supplemented with the appropriate antibiotics. The following antibiotic concentrations were used for the E. coli strains: tetracycline, 20 µg ml⁻¹; kanamycin, 50 µg ml⁻¹; gentamycin, 15 µg ml⁻¹ and ampicillin, 100 µg ml⁻¹. Pseudomonas putida strains were grown at 28°C on mannitol-glutamate (MG) medium (Kahane et al. 1978) supplemented with yeast extract (0:25 g l⁻¹) (MGY). The following antibiotic concentrations were used in the MGY medium: tetracycline, 20 µg ml⁻¹; kanamycin, 30 µg ml⁻¹; gentamycin, 15 µg ml⁻¹ and ampicillin, 200 µg ml⁻¹. When it was necessary for bacterial growth in a rich medium, Ps. putida strains were cultured on Pseudomonas agar F (PAF) (Difco, Detroit, MI, USA) under the same conditions. The growth rates of the Ps. putida mutant strains were tested in M9 minimal medium (Sambrook et al. 1989) supplemented with MgSO₄ (1 mmol l⁻¹) and glucose (0.4%, w/v) as a carbon source. Phytophthora parasitica M191 was usually grown at 28°C on V8C agar (Miller 1955), and synthetic growth (SG) medium (Andrew 1980) was used for preparation of P. parasitica-spent medium. Agar discs (7 mm in diameter) were cut from the edge of the mycelium and used as inocula for all the assays on agar plates. In the plasmid pGEM-Km, a kanamycin gene flanked by AscI restriction sites was produced by polymerase chain reaction (PCR) with vector pGEM-T Easy (Promega, Madison, WI, USA) as a template.

DNA techniques

Plasmid preparation, restriction endonuclease cleavage, ligation, electrophoresis, and other recombinant DNA techniques were carried out using standard methods (Ausubel et al. 1987). Chromosomal DNA of Ps. putida wild-type strain 06909 and its mutants was prepared with a Genomic DNA Preparation Kit (Promega). Southern blot analysis was performed using the DIG DNA labelling and detection kit (Boehringer Mannheim, Mannheim, Germany), as described in the manufacturer’s instructions. DNA sequencing was carried out at the Genomic Institute of the University of California, Riverside, CA, USA. The primers used in this study were synthesized commercially (Genosys Biotechnologies, Inc, The Woodlands, TX, USA). Sequences were analysed and compared with the Genbank databases by using BLAST (Basic Local Alignment Search Tool) programs. Sequence data for the Ps. putida KT2440 and Pseudomonas aeruginosa PA01 genomes were obtained from The Institute for Genomic Research (http://www.tigr.org) and the Pseudomonas Genome Project (http://www.pseudomonas.com), respectively.

IVET screening

A new genomic library of Ps. putida 06909 for Phytophthora-inducible IVET clones was constructed in pRIV16 as described in an earlier study (Lee and Cooksey 2000). Briefly, 2–8 kb Sau3A size-fractionated DNA fragments were ligated into the BamHI site of pRIV16 to generate the library. About 20 000 clones with inserts were
constructed, which was designed to represent all the DNA present in *Ps. putida* in both orientations with respect to the marker gene (pyrBC'). Recombinant plasmids were maintained in *E. coli* DH5α, introduced into the pyrB mutant strain *Ps. putida* 06909u2 by tri-parental mating with pRK2013 as a helper plasmid, and grouped in pools of ≈1000 transconjugants. Each pool of the transconjugants carrying recombinant clones was applied to V8C agar plates completely colonized by *P. parasitica*, at levels of 60 000 CFU of bacteria per plate. After incubating for 24 h at 28°C, the bacterial cells were harvested with 2 ml of sterile water and reapplied to V8C agar fungal plates to further enrich for *Phytophthora*-induced clones. However, enrichment more than twice resulted in the selection of clones containing constitutive promoters, and not *Phytophthora*-induced clones. Finally, the cells were recovered from *Phytophthora* plates and were selected on V8C agar supplemented with uracil (50 μg ml⁻¹), tetracycline, kanamycin and 80 μg of X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyanoside) per millilitre. As a promoterless lacZ gene in pRIV16 was cloned downstream from pyrBC' as a transcriptional fusion, blue colonies contained genes expressed in vitro and were eliminated. Only white colonies that contained cloned promoters induced specifically during colonization of *P. parasitica* were retained.

To confirm *Phytophthora* induction and to eliminate sibling clones, the plasmids were recovered from the selected clones and analysed by determining the restriction enzyme digestion patterns obtained with EcoRI, *Sphl*, *KpnI*, *XbaI*, *XhoI*, *ClaI* and *SmaI*. The plasmids of 16 unique clones were reintroduced into *Ps. putida* 06909u2 to confirm their induction by *Phytophthora*.

Gene disruption in *Pseudomonas putida* 06909 by marker exchange mutagenesis

Marker exchange plasmids for disruption of *Phytophthora* mycelium-induced (pmi) genes in the *Ps. putida* chromosome were constructed by crossover PCR for pmi-73 and pmi-81 (Yang et al. 2002), or with a commercial EZ::TN Insertion Kit (Promega) for pmi-41 (Fig. 1). Briefly, the crossover PCR strategy consisted of two rounds of PCR amplification by using two sets of primers: primers A and B for amplification of the left region flanking the sequences targeted for disruption, and primers C and D for amplification of the right region. Each primer set was designed to allow the amplification of more than 500 base pairs (bp) for efficient homologous recombination. Primer B contained, in the 5’ to 3’ direction, a 20-base sequence complementary to the 5’-end of primer C, an Ascl endonuclease cleavage site (eight bases) for insertion of a kanamycin gene, and 21 bases homologous to the region close to the ATG translation initiator. Its complementary partner, primer C, also contained the 20-base

Figure 1 Construction of marker exchange plasmids for marker exchange mutagenesis in *Pseudomonas putida* 06909 by using crossover polymerase chain reaction (PCR) (a) and a commercial EZ::TN insertion kit (b). Four specific primers were designed (primers A, B, C and D), where each primer had a region (arrow) homologous to the genomic sequence, and primers B and C had a sequence (dark block) complementary to each other. Each primer set (A/B and C/D) was used for the first round of PCR amplification, respectively, and primers A/D were used for the second round of PCR amplification. The gray region indicates the truncated pmi gene region and the dotted region indicates the downstream gene which is not included in the pmi fusion. The sequences of primers used were: 73-A: 5’-GCCGTGCGGTTGCTCAAGGATA-3’; 73-B: 5’-GTAAACCCGGAAGCCGCAGGCCTAGTGGTCCGCGAGGATA-3’; 73-C: 5’-TTGCCGGCTTCCCGTTTACGTCATGGTCCGCTGTA-3’; 73-D: 5’-GAGTACCGACTGAGGATAAC-3’; 81-A: 5’-ATGTCCTGCGGCGGAGAAC-3’; 81-B: 5’-TTATATGACCAGCAGCACCGGCGGCGCCGCTTGAGGATCGAGATAC-3’; 81-C: 5’-GGTGTGCTGCTTCATTAGATGCTAGTACCAACAACTGAGCCGAGAGAA-3’; 81-D: 5’-GAGTGTGCGGCGGCGGCTGCTGTTACGCG-3’; 41-A: 5’-ACAGATCTATGTCTCTCAGCAA-3’; 41-D: 5’-AGCTCACGGCAACCTTTT-3’. Bold sequences in primers B and C are complementary to each other, and the sequence underlined indicates the Ascl restriction site.
sequence complementary to the 5’-end of primer B and 21 bases homologous to an interior site of the target gene which determined the size of the deletion. By the complementary sequences contained in primers B and C, two fragments produced by first round of PCR were annealed to each other by heating at 94°C for 4 min and then slowly cooling to room temperature. After a short extension step at 72°C for 10 min, the second round of PCR amplification was performed by using primers A and D designed to anneal upstream and downstream of the target gene, respectively. Primer D in the pmi-73 clone was designed as a degenerate primer based on the dctA sequence from Ps. putida KT2440 and Ps. aeruginosa PA01. The final mutagenic PCR fragments obtained from the second PCR was cloned into pGEM-T Easy (Promega), and then a kanamycin gene from pGEM-Km was inserted into the Ascl site. For the pmi-41 clone, after insertion of a commercial EZ::TN, including a kanamycin gene instead of using the crossover PCR strategy, PCR amplification using primers A and D was performed, and its product was cloned into pGEM-T Easy. The resulting construct was recloned into the NotI site of pJQ200SK (Quandt and Hynes 1993). Following tri-parental mating with pRK2013 as a helper plasmid on YDC (yeast-dextrase-calcium carbonate agar) plates for 20 h as described with pRK2013 as a helper plasmid on YDC (Quandt and Hynes 1993). Following tri-parental mating construct was recloned into the NotI site of pJQ200SK its product was cloned into pGEM-T Easy. The resulting cin gene instead of using the crossover PCR strategy, PCR was cloned into pGEM-T Easy (Prome-PA01. The final mutagenic PCR fragments obtained from sequence from Ps. putida KT2440 and Ps. aeruginosa designed as a degenerate primer based on the dctA get gene, respectively. Primer D in the pmi-73 clone was amplified by using primers A and D. For the pmi-41 clone, after the second PCR was cloned into pGEM-T Easy (Prome-PA01. The final mutagenic PCR fragments obtained from sequence from Ps. putida KT2440 and Ps. aeruginosa designed as a degenerate primer based on the dctA get gene, respectively. Primer D in the pmi-73 clone was amplified by using primers A and D.

A quantitative β-galactosidase assay of pmi genes was performed as described earlier (Lee and Cooksey 2000). Briefly, V8C agar discs covered by actively growing P. parasitica and supplemented with uracil were inoculated with Ps. putida 06909u2 transconjugants carrying selected plasmids. After incubation for 20–24 h, the agar discs were dropped into 1 ml of sterile water, resuspended to release the bacterial cells grown on the discs, and assayed for β-galactosidase activity, as described by Miller (1972). The controls included an agar disc that was not inoculated with bacteria and an agar disc that was inoculated with Ps. putida 06909u2 (pRIV16).

A β-galactosidase assay was qualitatively performed with P. parasitica-spent medium and the Biolog GN2 MicroPlates (Biolog, Hayward, CA, USA) to study the nutritional factors stimulating the pmi gene expression. Preparation of the P. parasitica-spent medium was performed as described earlier (Fedi et al. 1997). Phytophthora parasitica was grown on SG agar (Andrew 1980) to cover the whole plate for 7 days, and then was overlaid with 10 ml of SG soft agar (0% agar). After incubation for 3 days, the overlay was collected and centrifuged at 12 000 g for 20 min. The supernatant was adjusted to pH 7.0 and filter sterilized. The assay was performed in a 96-well polystyrene microtitre plate (Costar 3596; Corning Inc., Corning, NY, USA), to which 100 μl of P. parasiti-ca-spent medium, 50 μl of M9 minimal medium supplemented with glucose, 1 μl of of X-gal solution (20 mg ml⁻¹) and 10 μl of bacterial suspension of a pmi fusion strain (OD₆00 ≈ 0.02) were added per well. When assayed in Biolog GN2 MicroPlates? (Biolog), each well included 125 μl of a suspension of a pmi clone suspended in M9 minimal medium supplemented with glucose, which was adjusted to OD ≈ 0.002, and 1 μl of X-gal solution (20 mg ml⁻¹). After 24 h of incubation, the plates were observed for expression of the lacZ reporter gene by the appearance of a blue colour.

Utilization of various carbon sources

Biolog GN2 MicroPlates? (Biolog) were used according to the directions of the manufacturer to determine the differences in the ability of mutants and wild type to oxidize 95 different carbon sources. The colour reaction was read by a Microplate Spectrophotometer (SpectraMax 340PC; Molecular Devices, Sunnyvale, CA, USA).

Colonization and growth inhibition on Phytophthora mycelia

Mycelial colonization of three mutants was observed along the edge of the mycelial colony. Two agar patches (3 mm × 3 mm) of actively growing P. parasitica on V8C were transferred onto each V8C plate. After the Phyto-phthora were allowed to grow for 2 days at 28°C, each mutant and wild type was spot-inoculated on the edge of one of the fungal colonies with sterile toothpicks and incubated for 24 h.

Phytophthora growth inhibition was assessed by directly inoculating these strains onto mycelial agar discs as described earlier (Yang et al. 1994). An agar disc containing mycelium of P. parasitica was transferred to the centre of two kinds of agar plates, PAF and V8C. Wild-type Ps. putida 06909 or each mutant was inoculated to the mycelial agar discs covered by actively growing Ps. putida 06909u2 transconjugants carrying selected plasmids. After incubation for 20–24 h, the agar discs were dropped into 1 ml of sterile water, resuspended to release the bacterial cells grown on the discs, and assayed for β-galactosidase activity, as described by Miller (1972). The controls included an agar disc that was not inoculated with bacteria and an agar disc that was inoculated with Ps. putida 06909u2 (pRIV16).
plates were incubated for 7–8 days at 28°C until the control plate containing only a mycelial disc without bacteria almost covered the whole plate. The *Phytophthora* growth on each plate was measured as a diameter of the *Phytophthora* colony. The diameter of each *Phytophthora* colony was the mean between the longest and the shortest diameters of the colony. Each treatment included three replications.

Competitive assay on mycelial mats

The growth of the mutants alone or mixed with the wild type was assessed on mycelial surfaces. Overnight cultures of the wild type and each mutant were diluted to OD600 ≈ 1.0 in water, and also mixed at a proportion of 1 : 1. *Phytophthora* mycelial colonies grown for 5 days on V8C agar were inoculated at the edge of the colony with 20 μl of each individual inoculum, or mixed inoculum of the wild type and each mutant strain. After incubation for 24 h at 28°C, bacteria were recovered from the mycelial colonies in 3 ml of sterile water, and viable cells from each population were determined by dilution plating on two kinds of selective media. Both the wild type and each mutant could grow on LB agar medium supplemented with ampicillin (200 μg ml⁻¹). However, only the mutants could grow on LB agar medium supplemented with kanamycin (50 μg ml⁻¹). Population data (CFU ml⁻¹) from three replications were averaged, and the standard error (SE) of each mean was calculated.

Motility and chemotaxis assays

Each strain was stab-inoculated to the centre of a LB soft agar (0.3% agar) plate with a sterile toothpick and incubated for 17 h at 28°C. Motility was then assessed through quantification, by examining the circular turbid zone formed by the bacterial cells migrating away from the point of inoculation. A chemotaxis assay was performed towards tryptone as described earlier (Espinosa-Urgel et al. 2000). A water-agar solution (0.2%, w/v) mixed with bacterial suspensions of the wild type or each mutant was poured onto the plates containing a drop of tryptone solution (1%, w/v) in the centre of the bacterial plate and incubated at 28°C (Taguchi et al. 1997). After 5 h, a concentric halo around the mycelium or the tryptone was observed as a positive.

Nucleotide sequence accession numbers

The DNA sequences determined in this study have been deposited in the GenBank database under accession no. AY214160 (clone in *pmi*-41), AY214161 (clone in *pmi*-73), AY214162 (clone in *pmi*-81) and AY214163 (clone in *pmi*-4).

Results

Isolation of *Pseudomonas putida* genes induced during colonization of *Phytophthora* mycelial surfaces and induction of their promoters

The library of *P. putida* DNA constructed in pRIV16, including a promoterless *pyrB′C-lacZ* fusion and introduced into *pyrB* mutant strain (*P. putida* 06909u2), was applied onto *Phytophthora* mycelial mats grown on pyrimidine-deficient V8C agar medium. The clones surviving in this interaction were considered as having actively expressed promoters, which drove the *pyrB* gene, from the random library. Plating of these clones onto the V8C agar medium including a pyrimidine source (uracil) and X-gal as a substrate for *lacZ* expression allowed the separation of clones with a promoter, which is specifically induced on *Phytophthora* mycelia (white colonies), from clones with a constitutive promoter (blue colonies). These promoters are referred to as *pmi* promoters in this study. From this initial screening, several hundred clones were selected as potential *pmi* clone candidates. For confirmation and quantification of *Phytophthora* induction, the expression of the *lacZ* gene of the *pmi* fusions was examined on a mycelia-covered agar plug compared with those grown on an agar plug without mycelia. Finally, 16 unique *pmi* fusions were selected by the quantitative β-galactosidase assay (Fig. 2) and the restriction enzyme digestion pattern analysis (data not shown). These *pmi* fusions exhibited at least 2–15-fold higher induction levels on *Phytophthora* mycelial surfaces compared with the growth on agar surfaces without mycelia (Fig. 2).

Sequence analysis of *pmi* fusions

To identify the upstream insert promoters driving expression of *pyrBC* in the *pmi* clones by *Phytophthora* signals, at least 500 bp upstream of *pyrBC* of each *pmi* clone was sequenced and amongst them, three clones (*pmi*-41, *pmi*-73 and *pmi*-81) were completely sequenced for further study. The resulting sequence data were used to search for similarities with published sequences in the GenBank database and for functions in the Clusters of Orthologous Groups of proteins (COG) database. As summarized in Table 1, 13 of the *pmi* loci are predicted to be involved in metabolic pathways, such as energy production and conversion (*pmi*-4 and *pmi*-7), carbohydrate metabolism and transport (*pmi*-10, *pmi*-73, *pmi*-81, *pmi*-90, *pmi*-97 and *pmi*-102), amino acid metabolism and transport (*pmi*-41, *pmi*-93 and *pmi*-99) and nucleotide metabolism (*pmi*-85, *pmi*-86 and *pmi*-91). Most of these deduced amino acid sequences showed high similarities to the corresponding proteins in *Ps. aeruginosa* PA01. Two other loci (*pmi*-84...
and pmi-101) could not be assigned any probable function.

Growth properties of three pmi mutants in vitro

To characterize the three pmi mutants (41TN, 73 km and 81 km), we measured their growth rates in M9 minimal medium supplemented with glucose and LB medium. In no case was the growth rate in either medium significantly different from the wild type (data not shown), suggesting that the disrupted genes were not indispensable for bacterial growth in vitro. However, the mutant 81 km showed a slightly longer lag phase in LB medium, probably because the disrupted gene (putative glyceraldehyde-3-phosphate dehydrogenase) might be interconnected with other metabolic pathways supporting fast growth in a rich medium. As judged by the growth on minimal medium supplemented only by glucose, these three mutants are not auxotrophs. The ability of these mutants to oxidize various carbon substances provided by the Biolog microplates was also measured. The mutant 41TN showed a significantly weaker reaction for α-aminobutyric acid, while 73 km showed a weak reaction for ρ-hydroxyphenyl acetic acid and succinic acid and a stronger reaction for χ-d-glucose. The reactions by the mutant 81 km were slightly different from that of the wild type for many carbon sources, such as l-arabonose, pyruvic acid methyl ester, succinic acid mono-methyl ester, acetic acid, malonic acid, propionic acid, L-alaninamide, L-leucine, phenylethly amide and 2-aminoethanol.

Colonization and inhibition of *Phytophthora* mycelia

As reported earlier (Lee and Cooksey 2000), *Ps. putida* 06909 colonizes along the edge of the mycelial colony from the inoculation spot and gradually spreads toward the centre of the mat. During incubation for 12 h, 81 km did not colonize further from the inoculation spot, while two other mutants, 41TN and 73 km, as well as the wild type, colonized the entire edge of the mycelial colony (data not shown). After 24 h of incubation, 81 km also colonized the entire edge of a mycelial colony. When each of these mutants mixed with the wild type was inoculated onto the mycelial colonies, the population of the mutant was reduced compared with that of the wild type (Table 2), suggesting that the mutants were not as competitive for *Phytophthora* colonization as the wild type. The reduced populations of the mutants was not likely owing to an impaired ability of the mutants to utilize nutrients in the V8C medium used in the assay, because when each of these mutants was inoculated individually onto the discs containing *P. parasitica* mycelia, all the bacteria grew similar to the wild type, fully colonizing *Phytophthora* mycelium and inhibiting *Phytophthora* growth (data not shown).

Other phenotypic characterization of pmi mutants

Motility has been shown to be important in establishing cell-surface contacts during colonization and further biofilm formation. However, it costs more energy to synthe-
of Phytophthora parasitica

<table>
<thead>
<tr>
<th>Locus</th>
<th>Similar protein, organism, per cent identity (GenBank ID)</th>
<th>Predicted function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy metabolism/carbohydrate catabolism/amino acid metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmi-4</td>
<td>glnK, PAS5288, Pseudomonas aeruginosa, 83% (AAG08673)</td>
<td>Nitrogen regulatory protein Pil-2</td>
</tr>
<tr>
<td>pmi-7</td>
<td>yhbW, Escherichia coli, 34% (COG2141)</td>
<td>Flavin-dependent oxidoreductase</td>
</tr>
<tr>
<td>pmi-10</td>
<td>PA5046, Ps. aeruginosa, 94% (AAG08431)</td>
<td>Malic enzyme</td>
</tr>
<tr>
<td>pmi-41</td>
<td>gabD, PA0265, Ps. aeruginosa, 89% (AAG03654)</td>
<td>Succinate-semialdehyde dehydrogenase</td>
</tr>
<tr>
<td>Pmi-81</td>
<td>PA3001, Ps. aeruginosa, 84% (AAG06389)</td>
<td>Probable glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Pmi-90</td>
<td>rpe, PA0607, Ps. aeruginosa, 94% (AAG03996)</td>
<td>Ribulose-phosphate 3-epimerase</td>
</tr>
<tr>
<td>Pmi-97</td>
<td>tal, PA2796, Ps. aeruginosa, 77% (AAG06184)</td>
<td>Transaldolase</td>
</tr>
<tr>
<td>Pmi-102</td>
<td>eno, PA3635, Ps. Aeruginosa, 88% (AAG07023)</td>
<td>Enolase</td>
</tr>
<tr>
<td>Nucleotide biosynthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmi-85</td>
<td>carA, PA4758, Ps. aeruginosa, 85% (AAG08144)</td>
<td>Carbamoyl-phosphate synthase</td>
</tr>
<tr>
<td>pmi-86</td>
<td>purM, E. coli, 76%(AAA83898)</td>
<td>Phosphoribosylaminomimidazole (AIR) synthetase</td>
</tr>
<tr>
<td>pmi-91</td>
<td>carB, PA4756, Ps. aeruginosa 94% (AAG08142)</td>
<td>Carbamoylphosphate synthetase large subunit</td>
</tr>
<tr>
<td>Membrane proteins/transporter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmi-73</td>
<td>dctA, PA1183, Ps. aeruginosa, 82% (AAG04572)</td>
<td>C4-dicarboxylate transport protein</td>
</tr>
<tr>
<td>pmi-93</td>
<td>aotl, PA0888, Ps. aeruginosa, 59% (AAG04277)</td>
<td>Arginine-/ornithine-binding protein</td>
</tr>
<tr>
<td>pmi-99</td>
<td>braC,PA1074, Ps. aeruginosa, 61% (AAG04463)</td>
<td>Leucine-, isoleucine- and valine-binding protein</td>
</tr>
<tr>
<td>Other noncategorized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pmi-84</td>
<td>Pseudomonas fluorescens, 71% (No COG related)</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>pmi-101</td>
<td>Ps. Fluorescens, 71% (No COG related)</td>
<td>Hypothetical protein</td>
</tr>
</tbody>
</table>

Table 2 Competion between Pseudomonas putida strains*

<table>
<thead>
<tr>
<th>Inoculants</th>
<th>CFU (× 10⁸)</th>
<th>Motility (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Ap (+ Km)</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>137 ± 7.5</td>
<td>15 ± 1.4</td>
</tr>
<tr>
<td>41TN</td>
<td>105 ± 1.4</td>
<td>10 ± 2.0</td>
</tr>
<tr>
<td>73 km</td>
<td>111 ± 1.4</td>
<td>9 ± 1.6</td>
</tr>
<tr>
<td>81 km</td>
<td>37 ± 0.5</td>
<td>8 ± 0.2</td>
</tr>
<tr>
<td>WT/41TN</td>
<td>115 ± 6.1</td>
<td>17 ± 1.6</td>
</tr>
<tr>
<td>WT/73 km</td>
<td>103 ± 9.0</td>
<td>34 ± 0.5</td>
</tr>
<tr>
<td>WT/81 km</td>
<td>107 ± 4.2</td>
<td>8 ± 0.2</td>
</tr>
</tbody>
</table>

*Each Pseudomonas putida strain was spot-inoculated onto the edge of Phytophthora mycelial colony grown on V8 agar medium for 5 days with 20 μl (OD = 1:0) of bacterial inoculum. After 24 h of incubation, the bacterial cells were harvested in 2 ml of D/W (distilled water) and plated out on two selective media containing ampicillin [Ap, for wild type (WT) and mutant] or kanamycin (Km, for mutants only). Data are the averages of three replications. Standard deviations were below 10% of the given values.

size and assemble various components of flagella and pili components required for motility (Rashid and Kornberg 2000). Therefore, we tested the motility of the mutants, because their disrupted genes are predicted to be involved in metabolic pathways and transport processes for energy production (Table 1). All the strains were motile and indistinguishable in M9 soft agar medium supplemented with glucose. However, in the assay performed in the LB soft agar medium (Table 3), mutant 81 km formed a significantly smaller motility halo (14±3 ± 1 mm in diameter) in LB compared with the wild type (52±0 ± 2 mm in diameter) after 23 h of incubation, while the other two mutants, 41TN and 73 km, formed larger halos (64±3 ± 6.4 and 62±3 ± 6.1 mm, respectively). In a qualitative chemotaxis assay, all the strains formed clear chemotactic rings towards a droplet of tryptone solution deposited in the centre of a plate mixed with the bacterial solution (data not shown), indicating that the chemotaxis ability of these mutants was not impaired. Mutant 81 km also had an altered colony morphology, with small-sized colonies on both M9 minimal agar medium supplemented with glucose and on LB agar medium, and had a rough surface on LB agar medium (Table 3), while the colony morphology of the other two mutants was indistinguishable from that of the wild type. The slightly longer lag phase in LB medium observed for mutant 81 km

Table 3 Phenotypes of three pmi mutants

<table>
<thead>
<tr>
<th>Strain</th>
<th>Motility in M9 (mm)</th>
<th>Motility in LB (mm)</th>
<th>Colony morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>15.5 ± 0.7*</td>
<td>52.0 ± 2.0</td>
<td>Normal</td>
</tr>
<tr>
<td>41TN</td>
<td>16.0 ± 1.0</td>
<td>64.3 ± 6.4</td>
<td>Normal</td>
</tr>
<tr>
<td>73 km</td>
<td>17.6 ± 0.5</td>
<td>62.3 ± 0.1</td>
<td>Normal</td>
</tr>
<tr>
<td>81 km</td>
<td>13.6 ± 0.5</td>
<td>14.3 ± 1.1</td>
<td>Very small</td>
</tr>
</tbody>
</table>

*The diameters of motility halos (average ± standard deviation) calculated by three replications.
†Colony morphology was observed on Luria-Bertani (LB) agar medium after incubation at 28°C for 3 days.
Nutritional factors as *Phytophthora* signals

In order to test whether nutritional factors produced by *P. parasitica* can induce the *pmi* gene promoters, we first tested the induction of three *pmi* gene promoters using a *Phytophthora*-spent medium. As shown in Fig. 3, when the *pmi* clones were incubated in a microtitre plate containing M9 minimal medium including *P. parasitica*-spent medium and X-gal solution for 24 h, the promoter induction was observed by the appearance of blue colour. Two out of the three *pmi* gene promoters (*pmi*-41 and *pmi*-81) showed a strong reaction (blue colour), and *pmi*-73 presented a slight reaction, indicating that these *pmi* genes can be induced by the substances diffused from *P. parasitica* in culture. In the promoter induction assay using Biolog microplates containing 95 different carbon sources (Table 4), all three of these *pmi* genes were induced by glycogen, which suggested that they may be induced by *Phytophthora* cell wall components. These *pmi* genes were also induced by other substances, such as organic acids and amino acids, including some that were utilized by *Ps. putida*, suggesting that fungal constituents or exudates with similar composition might induce these *pmi* genes and provide substrates for the bacterium on mycelial surfaces.

![Figure 3](image)

Figure 3 Promoter induction assay using *Phytophthora parasitica*-spent medium. Each well of a microtiter plate included 50 µl of M9 minimal medium supplemented with glucose, 100 µl of water (a) or *P. parasitica*-spent medium (b), 10 µl of bacterial suspension (OD₆₀₀ = 0.02) and 1 ml of X-gal solution (20 mg ml⁻¹). RIV16 (no promoter, a negative control); *pmi*-41, *pmi*-73, and *pmi*-81: *pmi* fusions; RIVA1 (constitutive promoter, positive control); Control: no bacteria inoculated. The promoter induction was observed by the appearance of blue colour after 24 h of incubation at 28 °C. Three replications were performed per treatment.

Discussion

As an initial step for the better understanding of the molecular mechanisms involved in bacterial colonization of *Phytophthora* mycelia, we have used the IVET strategy (Handfield and Levesque 1999; Rainey and Preston 2000). This IVET-based strategy has been applied to the study of other plant-associated bacteria. For example, genes that are preferentially expressed in the rhizosphere have been identified in *Ps. fluorescens* and *Ps. putida* (Bayliss et al. 1997; Rainey 1999), and genes that are induced during infection of *Arabidopsis thaliana* have been identified in *Ps. syringae pv. tomato* (Boch et al. 2002). In our IVET screening using pyrB’C-lacZ fusion as a selection marker, we originally identified five genes in *Ps. putida* with increased expression on *Phytophthora* mycelial surfaces. Sequence analysis showed that three of these were related to genes with earlier described functions, including a diacylglycerol kinase, an ABC transporter, and an outer membrane porin (Lee and Cooksey 2000). In the present study, sequence analysis of an additional 16 strongly induced *pmi* genes revealed that many of them displayed similarity to genes known or predicted to be involved in diverse carbon catabolism, amino acid/nucleotide metabolism and transport processes. This study has therefore expanded our understanding of the differential gene expression patterns of *Ps. putida* under these conditions. We demonstrated earlier that the adherence to hyphe and siderophore production by *Ps. putida* 06909 are important in the inhibition of *Phytophthora* (Yang et al. 1994), but in the current study, no additional functions that provide obvious explanations for the observed biological control effect of *Ps. putida* 06060 on *Phytophthora* were identified (Turney 1995; Steddom et al. 2002). Instead, it appears that successful colonization and inhibition of *Phytophthora* by *Ps. putida* involves the induction of multiple metabolic pathways, in addition to adherence and competition for iron.

The discovery of a *glnK* homolog (*pmi-4*) suggests that *Ps. putida* on the mycelial surface is under metabolic stress, such as starvation for an essential nutrient, because the PII-like signal transduction protein encoded by *glnK* is known to be involved in nitrogen regulation under nitrogen starvation (van Heeswijk et al. 1996; Ninfa and Atkinson 2000). The same gene was also identified in another fusion (*pmi-33*, not shown in Table 1) which spans more DNA downstream of *glnK* to *amtB* that encodes a membrane-bound ammonium transport protein, and usually consists of an operon with *glnK* in several bacteria (Meletzus et al. 1998; Ninfa and Atkinson 2000; Thomas et al. 2000; Coutts et al. 2002).

In *pmi-41*, the gene *gabD* encoding a succinate semialdehyde dehydrogenase homolog (P25526) is known in
Oomycete-induced bacterial genes

S.-J. Ahn et al.

Table 4 Carbon substances that induce three pmi genes*

<table>
<thead>
<tr>
<th>Fusion</th>
<th>Not utilized as a carbon source</th>
<th>Utilized as a carbon source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmi-41</td>
<td>Glycogen (A4)</td>
<td>ACETIC ACID (D1), b-hydroxybutyric acid (D11), a-KETOGLUTARIC ACID (E4), d,L-LACTIC ACID (E6), quinic acid (E9), d-saccaric acid (E10), succinic acid (E12), d-ALANINE (F5), l-alanine (F6), l-alanylglycine (F7), L-ASPARAGINE (F8), L-aspartic acid (F9), L-GLUTAMIC ACID (F10), glycyrl-L-aspartic acid (F11), glycyrl-L-glutamic acid (F12), hydroxy-l-proline (G2), L-PROLINE (G6), L-PYROGLUTAMIC ACID (G7), ω-AMINOBUTYRIC ACID (G12), uridine(H3), PUTRESCINE (H6)</td>
</tr>
<tr>
<td>pmi-73</td>
<td>Glycogen (A4)</td>
<td>Succinic acid (E12), URIDINE (H3)</td>
</tr>
<tr>
<td>pmi-81</td>
<td>Glycogen (A4)</td>
<td>Tween 40 (A5), Tween 80 (A6), ACETIC ACID (D1), b-hydroxybutyric acid (D11), a-ketoglutaric acid (E4), d,L-lactic acid (E6), quinic acid (E9), succinic acid (E12), d-alanine (F5), l-alanine (F6), L-glutamic acid (F10), L-pyroglutamic acid (G7), ω-AMINOBUTYRIC ACID (G12), URIDINE (H3), putrescine (H6)</td>
</tr>
</tbody>
</table>

*The assay was performed by using a Biolog GN2 MicroPlate™ containing 95 different carbon sources. Each well had 125 ml (≈106 cells) of bacterial suspension in M9 medium supplemented with glucose and 1 μl of X-gal (20 mg ml⁻¹). After 24 h of incubation, blue colour wells had a higher intensity than that of the control well (water, A1) and were considered as positive inducers. The capitalized substances showed higher induction, more than three times when measured by microplate spectrophotometer at 340 nm.

some bacteria to be a gene of the gab cluster, gabCDPT, which specifies the synthesis of the enzymes of the ω-aminobutyrate (GABA) degradation pathway (Dover and Halpern 1972; Metzer and Halpern 1990) and is responsible for the conversion of succinic semialdehyde into succinate. The activation of the gab gene expression by nitrogen deprivation has been demonstrated earlier to be mediated by the glg regulatory system (Ntr) (Kahane et al. 1978; Zaboura and Halpern 1978). However, in Ps. putida KT2440 and Ps. aeruginosa PA01, only two genes, gabD and gabT (GABA aminotransferase, P22256), are known to appear in a cluster. The gabT protein catalyses the conversion of GABA into succinic semialdehyde (Bartsch et al. 1990), and was recently reported to be involved in lysine metabolism and to be rhizosphere-induced in Ps. putida KT2440 (Espinosa-Urgel and Ramos 2001). Therefore, it is possible that the fungal induction of gabD in this study is because of the exudates produced by Phytophthora mycelia and the nutrient (nitrogen) limitation on the mycelial surface.

Two loci (pmi-73 and pmi-10) induced by Phytophthora mycelia are predicted to be involved in C4-dicarboxylic acid transport and metabolism, respectively. The gene dctA (pmi-73), encoding a C4-dicarboxylic acid transport protein, is known to be a gene of the dct system of rhizobia, where the organization of the dct locus is conserved and consists of a three-gene cluster together with two regulatory genes (dctB and dctD). However, in Ps. putida and Ps. aeruginosa, no similar genes were found upstream or downstream from dctA in the genome sequence. In rhizobia, the dctB and dctD gene products function as a two-component system, together with sigma factor σ34, for the expression of dctA under free living conditions in response to the presence of dicarboxylic acids (Yarosh et al. 1989). As the C4-dicarboxylic acids are known to be transported and metabolized in symbiotic associations between rhizobia and leguminous plants, the compounds might be acquired by the bacterium from Phytophthora in this interaction. In E. coli, C4-dicarboxylic acids are known to be utilized as carbon and energy sources (Davies et al. 1999). A malic enzyme homolog encoded by pmi-10 catalyses the reductive carboxylation of pyruvate to give malate as an anaplerotic pathway, where the citric acid cycle intermediates would be replenished to maintain the flux through the cycle. The induction by these two loci was shown to be about sixfold greater than those of the same clones in the absence of the fungus (Fig. 2). Thus, C4-dicarboxylic acid transport and metabolism might be involved in this bacterial–Phytophthora interaction.

Carbon catabolism and the related energy metabolism seem to play important roles in the bacterial colonization on mycelial surfaces. Recently, the global carbon metabolism regulator catabolite repression control (CRC) was reported to be a component of the signal transduction pathway required for biofilm development by Ps. aeruginosa (O’Toole et al. 2000), which suggests that carbon regulation could be a part of the pathway for the bacterial colonization on mycelial surfaces. Four pmi genes (pmi-81, pmi-90, pmi-97 and pmi-102), which encode glyceraldehyde-3-phosphate dehydrogenase, ribulose-phosphate 3-epimerase, transaldolase and enolase homologs, respectively, were shown to be highly expressed on the mycelial surface.

Three of the fusions (pmi-85, pmi-86 and pmi-91) were predicted to be involved in nucleotide and amino acid biosynthesis (Table 1). The genes carA (pmi-85) and carB (pmi-91), encoding subunits of carboxamoylphosphate synthase small chain, are involved in pyrimidine biosynthesis and glutamate metabolism, and purM (pmi-86) is involved in de novo purine biosynthesis. The car operon is known to be regulated by ArgR, the terminal gene product of the aot operon, which functions in control of
arginine metabolism in \textit{Ps. aeruginosa} (Park et al. 1997a,b). As arginine metabolism is of considerable significance in \textit{Ps. aeruginosa}, which can use utilize this amino acid as a good source of carbon, nitrogen and energy (Haas et al. 1990), the induction of these genes might be involved in energy metabolism or other gene expressions required for colonization of mycelia by \textit{Ps. putida}.

Two pmi fusions involved in amino acid transport processes were identified in this screen. The polypeptide of pmi-99 gene has high similarity with a component (AotJ) of a periplasmic binding protein-dependent transporter for arginine and ornithine, which is usually organized in an operon \textit{(aotfQMOP-argR)} with five other genes in \textit{Ps. aeruginosa} (Nishiyio et al. 1998). The terminal gene, \textit{argR}, in this operon is known to function in the control of expression of certain genes of arginine biosynthesis and catabolism, as well as in the control of expression of the catabolic glutamate dehydrogenase (Park et al. 1997a,b). As a sequence structure similar to that of the rho-independent terminator is known to be located in the \textit{aotf-aotQ} intergenic region (Nishiyio et al. 1998), other downstream components of the transport system and \textit{argR} could be expressed differently from \textit{aotJ}. The other fusion involved in amino acid uptake is pmi-99, for which the deduced amino acid sequence is highly similar to the sequence of the branched-chain amino acid transport protein BrC in \textit{Ps. aeruginosa}, and LIV-I and LS transport proteins in \textit{E. coli} belonging to the hydrophobic amino acid transporter (HAAT) families of ABC transporters of amino acids (Saier 2000; Hosie and Poole 2001). These proteins are expected to be involved in the transport of neutral and aliphatic amino acids, such as leucine, isoleucine, valine, threonine and alanine. Recently, the Bra transporter of \textit{Rhizobium leguminosarum} was reported to transport a broad range of solutes including acidic and basic polar amino acids, and GABA, as well as hydrophobic and neutral amino acids (Hosie and Poole 2001). Therefore, the induction of genes involved in the amino acid uptake of \textit{Phytophthora} in this study suggests that the uptake of amino acids could be a bacterial trait involved in bacterial colonization, in addition to the ability of \textit{Pseudomonas} to synthesize amino acids (Simons et al. 1997).

Some of the pmi genes, such as \textit{ gabD (pmi-41), dctA (pmi-73)} and \textit{brac (pmi-99)} are correlated with rhizosphere-induced genes (Simons et al. 1997; Rainey 1999; Espinosa-Urgel and Ramos 2001), suggesting that similar or common mechanisms might be involved in bacterial colonization to mycelial surfaces as well as to root surfaces (rhizosphere). This is supported by the fact that some of the composition of root exudates, consisting of sugars, organic acids and amino acids, is similar to that of fungal constituents or exudates used for bacterial survival and adaptation (Bartnicki-Garcia 1966; Lugtenberg et al. 1999; Singh and Arora 2001). As some of the rhizosphere-induced genes of \textit{Pseudomonas} biocontrol strains have been known to be highly expressed in response to root exudates (Lugtenberg et al. 1999; Vilchez et al. 2000; Espinosa-Urgel and Ramos 2001), \textit{Phytophthora} constitutes or exudates with a similar composition might be able to induce the pmi genes required for complete colonization, and provide substrates for the bacterium on mycelial surfaces. All the three pmi genes tested were highly expressed by \textit{P. parasitica}-spent medium as well as various substances, such as organic acids and amino acids, suggesting that many of the \textit{Phytophthora} signals stimulating the pmi gene expression might be involved in bacterial nutrition. It is notable that all the three genes are induced by glycogen that was not utilized by the \textit{Ps. putida} strains. Glycogen is a type of branched homopolysaccharide produced as a storage product in \textit{Phytophthora}. Related glucan polymers make up the cell wall of \textit{Phytophthora}. Thus, the pmi gene expression might be stimulated by cell wall or storage components of \textit{Phytophthora}. The diffusible signals produced by the phytopathogenic oomycete \textit{Pythium ultimum} have been reported to repress the expression of \textit{P. fluorescens} F113 genes (Fedi et al. 1997; Smith et al. 1999). However, the method by which the repression is recognized and processed by the bacterium is unknown. Thus, understanding the \textit{in vivo} signals produced by \textit{Phytophthora} and their target genes would provide deeper insight into the mechanisms on bacterial signal transduction and developmental colonization processes.

Although all the three pmi mutants appeared to be indistinguishable from the parental strain with respect to the growth rate, the Biolog assay showed differential oxidation of the different carbon substances. Particularly, the mutant 81 km differed in oxidation of several carbon sources, suggesting that the disrupted glyceraldehyde-3-phosphate dehydrogenase gene may affect different metabolic pathways. The mutant 81 km presented slower adaptation to mycelial surfaces as shown in Table 2, suggesting that the disrupted gene might be involved in the bacterial ability to utilize the substances on mycelial surfaces. When each of these mutants was mixed with the wild type and inoculated onto mycelial surfaces, their populations were reduced. Thus, these disrupted genes might be required for full competitive colonization of the mycelial surfaces.

\textit{Phytophthora} exudates act as attractants and growth substrates for bacteria (Singh and Arora 2001), and bacterial growth and colonization on the mycelia might cause nutrient stress or reduced vigour to \textit{Phytophthora}, affecting their growth (Lim and Lockwood 1988). None of these pmi mutants seem to be significantly affected in its survival.
ability to inhibit *Phytophthora* growth on PAF agar medium (data not shown), suggesting that these disrupted genes might not be directly involved in antifungal activity. However, when assayed on the V8C agar medium under the same conditions, these mutants seemed to inhibit mycelia growth more than the wild type (data not shown), suggesting that these gene disruptions might cause differential colonization of *Phytophthora* mycelia depending on the nutritional environment.

A significant alteration of the colony morphology was observed in the mutant 81 km, but not in the other two mutants. Its smaller and rougher colony morphology might be caused by an effect on bacterial surface structure or surface association (Wai et al. 1998; Henderson et al. 1999; Deziel et al. 2001). A similar morphological alteration was observed in the phenotypic variants of *Pseudomonas* spp., which were involved in motility, biofilm formation and various traits important for the rhizosphere colonization (Sanchez-Contreras et al. 2002).

Our results described earlier demonstrate that IVET screening and mutant characterization can be used to identify bacterial genes which are induced on the mycelial surface. The study of nutritional signals that originated from *P. parasitica* provided insight into the possible mechanisms of mycelial colonization by this bacterium. Disruption of the genes highly expressed during colonization of the fungal mycelia can cause various phenotypic changes affecting bacterial behaviour on mycelial surfaces.

Acknowledgements

We thank S.-W. Lee for his technical assistance in the IVET experiments, J.A. Menge, Y. Okinaka, and K. Dumeny for helpful comments and discussions on experiments and the manuscript and our colleagues for their support and advice. This work was supported by funding from the University of California Agricultural Experiment Station and the Citrus Research Board.

References

© 2006 The Authors

Smith, L.M., Tola, E., deBoer, P. and O’Gara, F. (1999) Signalling by the fungus *Pythium ultimum* represses expression of two ribosomal RNA operons with key roles in the

